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Solubility of drugs in aqueous solutions
Part 1. Ideal mixed solvent approximation
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Abstract

The present paper deals with the application of the fluctuation theory of solutions to the solubility of poorly soluble drugs in
aqueous mixed solvents. The fluctuation theory of ternary solutions is first used to derive an expression for the activity coefficient
of a solute at infinite dilution in an ideal mixed solvent and, further, to obtain an equation for the solubility of a poorly soluble
solid in an ideal mixed solvent. Finally, this equation is adapted to the solubility of poorly soluble drugs in aqueous mixed solvents
by treating the molar volume of the mixed solvent as nonideal and including one adjustable parameter in its expression. The
obtained expression was applied to 32 experimental data sets and the results were compared with the three parameter equations
available in the literature.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well-known that the addition of an organic co-
solvent to water can dramatically change the solubility
of drugs (Yalkowsky and Roseman, 1981). This fact
is important for pharmaceutics because a poor aque-
ous solubility can often affect the drug efficiency. For
this reason, the prediction of the solubility of drugs in
aqueous mixed solvents or even a reliable correlation
of the available experimental data is of interest to the
pharmaceutical science and industry.

The solubility of solid substances in pure and mixed
solvents can be described by the usual solid–liquid
equilibrium conditions (Acree, 1984; Prausnitz et al.,
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1986). For the solubilities of a solid substance (so-
lute, component 2) in water (component 3), cosolvent
(component 1) and their mixture (mixed solvent, 1–3),
one can write the following equations:

fS
2

f L
2 (T, P)

= x
b1
2 γ

b1
2 (T, P, {x}) (1)

fS
2

f L
2 (T, P)

= x
b3
2 γ

b3
2 (T, P, {x}) (2)

fS
2

f L
2 (T, P)

= xt
2γ

t
2(T, P, {x}) (3)

In Eqs. (1)–(3), x
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2 and xt

2 are the solubilities
(mole fractions) of the solid component 2 in the co-
solvent, water, and their mixture, respectively,γ
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2 are the activity coefficients of the solid
in its saturated solutions in the cosolvent, water, and
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mixed solvent,f L
2 (T, P) is the hypothetical fugacity

of a solid as a (subcooled) liquid at a given pressure
(P) and temperature (T), fS

2 is the fugacity of a pure
solid component 2, and{x} designates that the activ-
ity coefficients of the solid depend on composition.
If the solubilities of the pure and mixed solvents in
the solid phase are negligible, then the left hand sides
of Eqs. (1)–(3)depend only on the properties of the
solute.Eqs. (1)–(3)show that the solubilities of solid
substances in pure and mixed solvents can be calcu-
lated if its activity coefficients in the binary and ternary
saturated solutions (1–2, 2–3, and 1–2–3) are known.
The activity coefficients of a solute in a pure and
mixed solvent can be calculated by group-contribution
methods, such as UNIFAC or ASOG (Acree, 1984;
Prausnitz et al., 1986). The application of UNIFAC
to the solubility of naphthalene in nonaqueous mixed
solvents provided satisfactory results when compared
to experimental data (Acree, 1984). However, the ac-
curacy of the UNIFAC was poor for the solubility of
solids in aqueous solutions (Fan and Jafvert, 1997).

The activity coefficients of a solute in a mixed sol-
vent could be also calculated by employing various
well-known phase equilibria models, such as the Wil-
son, NRTL, Margules, etc., which using information
for binary subsystems could predict the activity co-
efficients in ternary mixtures (Fan and Jafvert, 1997;
Domanska, 1990).

Many other methods, mainly empirical and semiem-
pirical, were suggested for the correlation and pre-
diction of the solubility of solids in a mixed solvent.
Details regarding these methods and their comparison
with experiment were summarized in books and re-
cent publications (Acree, 1984; Prausnitz et al., 1986;
Barzegar-Jalali and Jouyban-Gharamaleki, 1996;
Jouyban-Gharamaleki et al., 1999).

The solubility of drugs in aqueous mixed solvents
often exhibits a maximum in the curve solubility ver-
sus mixed solvent composition. This “enhancement”
in solubility often greatly exceeds the solubilities
not only in water, which is quite natural, but also in
nonaqueous cosolvents. Such a dependence could not
be explained by simple equations like the log-linear
model for the solubility in a mixed solvent (Yalkowsky
and Roseman, 1981)

ln xt
2 = ϕ1 ln x

b1
2 + ϕ3 ln x

b3
2 (4)

whereφi (i = 1, 3) is the volume fraction of com-
ponenti in the mixed solvent 1–3. One should men-
tion that such simple equations provided satisfactory
results for systems which did not exhibit maxima.

Various other models for drug solubility in aque-
ous mixed solvents have been proposed and the re-
sults were compared (Barzegar-Jalali and Jouyban-
Gharamaleki, 1996; Jouyban-Gharamaleki et al.,
1999).

The main difficulty in predicting the solid solubility
in a mixed solvent consists in calculating the activity
coefficient of a solute in a ternary mixture (γ t

2). In this
paper, the Kirkwood–Buff (KB) theory of solutions
(or fluctuation theory) (Kirkwood and Buff, 1951) is
employed to analyze the solid (particularly drug) sol-
ubility in mixed (mainly aqueous) solvents. The anal-
ysis is based on results obtained previously regarding
the composition derivatives of the activity coefficients
in ternary solutions (Ruckenstein and Shulgin, 2001).
These equations were successfully applied to gas sol-
ubilities in mixed solvents (Ruckenstein and Shulgin,
2002; Shulgin and Ruckenstein, 2002).

Thus, the aim of the present paper is to apply the
fluctuation theory for ternary mixtures to the solubility
of drugs in aqueous mixed solvents and to suggest
on this basis a simple and accurate method for its
correlation.

2. Theory

2.1. The Kirkwood–Buff theory of solution

The KB theory of solution (Kirkwood and Buff,
1951) connects the macroscopic properties of solu-
tions, such as the isothermal compressibility, the con-
centration derivatives of the chemical potentials, and
the partial molar volumes to their microscopic char-
acteristics in the form of spatial integrals involving
the radial distribution function.

The key quantities in the KB theory of solution are
the so-called Kirkwood–Buff integrals (KBIs), defined
as

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (5)

wheregαβ is the radial distribution function between
speciesα and β, and r is the distance between the
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centers of moleculesα and β. The isothermal com-
pressibility, the concentration derivatives of the chem-
ical potentials, and the partial molar volumes in any
multicomponent mixture can be expressed in terms of
the KBIs. In this paper, the attention is focused on the
concentration derivatives of the chemical potentials,
because they can provide useful information regard-
ing the activity coefficient of a solute in a ternary
mixture (γ t

2).
Kirkwood and Buff (Kirkwood and Buff, 1951)ob-

tained the following expression for the concentration
derivative of the activity coefficient of componentα

in a binary mixtureα–β:(
∂ ln γα

∂xα

)
P,T

=
c0
β(Gαα + Gββ − 2Gαβ)

1 + c0
αxβ(Gαα + Gββ − 2Gαβ)

(6)

wherexi and �i are the mole fraction and the activ-
ity coefficient of component i in the binary mixture
α–β and c0

i is the bulk molecular concentrations of
componenti. The present authors (Ruckenstein and
Shulgin, 2001) established explicit expressions for the
concentration derivatives of the activity coefficients in
a ternary mixture. These expressions are more com-
plicated thanEq. (6), and the only derivative which is
of interest in the present paper has the form(
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where∆αβ and∆123 are defined as follows:
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The factors in the square brackets in the numerator
of Eq. (7)and∆123 can be expressed in terms of∆αβ

as follows

G12 + G33 − G13 − G23 = ∆13 + ∆23 − ∆12

2
(10)

G11 + G23 − G12 − G13 = ∆12 + ∆13 − ∆23

2
(11)

and

∆123 = −
(∆12)

2 + (∆13)
2 + (∆23)

2

− 2∆12∆13 − 2∆12∆23 − 2∆13∆23

4
(12)

The insertion ofEqs. (10)–(12)into Eq. (7)provides
a rigorous expression for the derivative(∂ ln γ2,t/

∂xt
3)T,P,xt

2
in terms of∆αβ and concentrations.

It should be noted that∆αβ is a measure of the
nonideality (Ben-Naim, 1977) of the binary mixture
α andβ, because for an ideal mixture∆αβ = 0. For
a ternary mixture 1–2–3,∆123 also constitutes a mea-
sure of nonideality. Indeed, insertingGid

αβ for an ideal
mixture (Ruckenstein and Shulgin, 2001) into the ex-
pression of∆123 one obtains that for an ideal ternary
mixture∆123 = 0.

2.2. The activity coefficient of a solute in a mixed
solvent at infinite dilution

At infinite dilution of a solute,Eq. (7)can be recast
as follows:
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wherec0
1 andc0

3 are the bulk molecular concentrations
of components 1 and 3 in the binary 1–3 solvent.

For a binary 1–3 solvent,Eq. (6) can be rewritten
as follows:(

∂ ln γ3

∂x3

)
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(6a)

Eq. (6a)allows one to obtain for∆13 the following
expression:

∆13 = (∂ ln γ3/∂x3)P,T

c0
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3x1(∂ ln γ3/∂x3)P,T
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Introducing∆13 from Eq. (6b) in Eq. (13)and inte-
grating yields
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wherex
b,1–3
i (i = 1, 3) is the mole fraction of compo-

nenti in the mixed solvent,γ t,∞
2 is the activity coeffi-

cient of a solute in a mixed solvent at infinite dilution
andA is a constant of integration.

Eq. (14)will be used in the next section to derive
an expression for the solubility of a solid in a mixed
solvent.

2.3. Solubility of poorly soluble solids in an ideal
mixed solvent

For poorly soluble solids one can use the infinite
dilution approximation and consider that the activ-
ity coefficient of a solute in a mixed solvent is equal
to the activity coefficient at infinite dilution. Thus,
Eqs. (1)–(3)can be rewritten as follows:
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2 are the activity coefficients at

infinite dilution of the solute in the pure solvents 1
and 3.

Eq. (14) is a rigorous equation applicable to any
ternary mixture.

At this point, two simplifications are introduced
which allow one to obtain working expressions for the
solubility of poorly soluble solids in an ideal mixed
solvent:

(a) (∆12)xt
2=0 = (G11 + G22 − 2G12)xt

2=0 and
(∆23)xt

2=0 = (G22 + G33 − 2G23)xt
2=0 are

independent of the composition of the solvent mix-
ture, and

(b) the binary solvent 1–3 is ideal and therefore
γ

b,1–3
3 = 1 and

V = x
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1 V 0

1 + x
b,1–3
3 V 0

3 (18)

whereV is the molar volume of the binary mixture
1–3, andV 0

1 and V 0
3 are the molar volumes of the

individual solvents 1 and 3.
With these two simplifications,Eq. (14) can be

rewritten, whenV 0
1 �= V 0

3 , in the form
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whereB(P, T) = (∆12 − ∆23)xt
2=0/2.

The constantsA(P, T) andB(P, T) can be obtained
using the following limiting expressions:
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CombiningEqs. (19)–(21)yields the following ex-
pression for the activity coefficient of a solute in an
ideal mixed solvent at infinite dilution whenV 0

1 �= V 0
3
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Inserting expressions (15–17) intoEq. (22)yields the
following equation for the solubility of a poorly solu-
ble solid in an ideal mixed solvent:
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Fig. 1. Comparison between experimental (�) (Jouyban et al., 2002) and predicted (solid lines) solubilities of oxolinic acid (S is the
mole fraction of oxolinic acid) in the mixed solvent water/ethanol (xet is the mole fraction of ethanol) at room temperature. 1—solubility
calculated usingEqs. (23) and (25), 2—solubility calculated usingEqs. (23) and (18), and 3—the solubility calculated usingEq. (4).

However, whenV 0
1 = V 0

3 , Eq. (23)leads to a nonde-
termination 0/0. In this case, using the same approxi-
mations as in the previous case and taking into account
thatV = V 0

1 = V 0
3 , Eq. (14)leads to

ln xt
2 = x

b,1–3
1 ln x

b1
2 + x

b,1–3
3 ln x

b3
2 (24)

Eq. (24)is similar toEq. (4)with the difference that
the volume fractions for the mixed solvent are replaced
by mole fractions.

Fig. 2. Comparison between experimental (�) (Bustamante et al., 1993) and predicted (solid lines) solubilities of sulfadiazine (S is the
mole fraction of sulfadiazine) in the mixed solvent water/dioxane (xdiox is the mole fraction of dioxane) at room temperature. 1—solubility
calculated usingEqs. (23) and (25), 2—solubility calculated usingEqs. (23) and (18), and 3—the solubility calculated usingEq. (4).

Eq. (23), which was derived using the KB theory of
solutions for a ternary mixture, can predict the solubil-
ity of a poorly soluble solid in an ideal mixed solvent
in terms of the solubilities of the solid in the individ-
ual constituents of the mixed solvent and their molar
volumes.

However,Eq. (23) cannot describe the maximum
in the curve of solubility versus mixed solvent com-
position which was frequently observed experimen-
tally for the solubilities of drugs in aqueous mixed
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solvents (Jouyban-Gharamaleki et al., 1999and ref-
erences therein). To accommodate this feature of the
solubility curve, the molar volume of the mixed sol-
vent will be replaced inEq. (23)by

v = x
b,1–3
1 V 0

1 + x
b,1–3
3 V 0

3 + exb,1–3
1 x

b,1–3
3 (25)

where e is an empirical parameter which is evalu-
ated from the solubility data in a mixed solvent. One
should not expect forEq. (25)to satisfactorily repre-
sent the molar volume of the mixed solvent. The inser-
tion of Eq. (25)into Eq. (23)leads to a one-parameter
semiempirical equation for the solubility of a solid in

Table 1
The experimental dataa regarding the solubilities (at room temperature) of drugs in aqueous mixed solvents used in calculations

Systems no. Cosolvent Solute nb Reference Value of e
(cm3/mol)
in Eq. (25)

1 N,N-Dimethylformamide Sulfadiazine 14 Martin et al. (1982) 49.3
2∗ N,N-Dimethylformamide Theophyllene 11 Gonzalez et al. (1994) 45.2
3∗ N,N-Dimethylformamide Caffeine 11 Herrador and Gonzalez (1997) 42.8
4 Dioxane Caffeine 16 Adjei et al. (1980) 1433.9
5 Dioxane p-Hydroxybenzoic acid 13 Wu and Martin (1983) 183.2
6 Dioxane Paracetamol 17 Romero et al. (1996) 365.4
7 Dioxane Phenacetin 13 Bustamante and Bustamante (1996) 249.8
8 Dioxane Sulfadiazine 17 Bustamante et al. (1993) 325.9
9 Dioxane Sulfadimidine 19 Bustamante et al. (1993) 220.5

10 Dioxane Sulfamethizole 19 Reillo et al. (1995a) 678.6
11 Dioxane Sulfamethoxazole 15 Bustamante et al. (1993) 199.0
12 Dioxane Sulfapyridine 17 Reillo et al. (1995b) 390.5
13 Dioxane Sulfamethoxypyridazine 19 Bustamante et al. (1993) 252.9
14 Dioxane Sulfanilamide 16 Reillo et al. (1993) 256.3
15 Dioxane Sulfisomidine 21 Martin et al. (1985) 536.0
16 Dioxane Theobromine 11 Martin et al. (1981) 348.8
17 Dioxane Theophyllene 21 Martin et al. (1980) 2317.7
18 Ethanol Paracetamol 13 Romero et al. (1996) 108.3
19 Ethanol Sulfamethazine 11 Bustamante et al. (1994) 152.0
20 Ethanol Sulfanilamide 12 Bustamante et al. (1994) 113.0
21∗ Ethanol Oxolinic acid 11 Jouyban et al. (2002) 261.3
22 Ethylene glycol Naphthalene 18 Khossravi and Connors (1992) 2.2
23 Ethylene glycol Theophyllene 17 Khossravi and Connors (1992) 24.7
24 Methanol Theophyllene 13 Khossravi and Connors (1992) 151.2
25 Propylene glycol Butylp-aminobenzoate 11 Rubino and Obeng (1991) 32.5
26 Propylene glycol Butylp-hydroxybenzoate 11 Rubino and Obeng (1991) 19.6
27 Propylene glycol Ethylp-aminobenzoate 11 Rubino and Obeng (1991) 44.5
28 Propylene glycol Ethylp-hydroxybenzoate 11 Rubino and Obeng (1991) 40.5
29 Propylene glycol Methylp-aminobenzoate 11 Rubino and Obeng (1991). 43.1
30 Propylene glycol Methylp-hydroxybenzoate 11 Rubino and Obeng (1991). 46.8
31 Propylene glycol Propylp-aminobenzoate 11 Rubino and Obeng (1991). 34.2
32 Propylene glycol Propylp-hydroxybenzoate 11 Rubino and Obeng (1991). 21.8

a Most of the references were taken from the paper of Jouyban-Gharamaleki et al. (Jouyban-Gharamaleki et al., 1999), but some additional
data (∗) were also included.

b n is the number of experimental points in each data set.

a mixed solvent. This equation exhibits a maximum
in the curve of solubility versus mixed solvent com-
position (Figs. 1 and 2).

3. Results and discussion

In order to verify the applicability ofEq. (23)
combined with the nonideal molar volume of a
mixed solvent to the solubility of a drug in an aque-
ous mixed solvents, 32 experimental sets were se-
lected. Most of them were taken from the paper of
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Table 2
Comparison between the drug solubilities calculated using
Eqs. (23) and (25)and literature models

Number of constants MPD (%)a

Using Eqs. (23)
and (25)

MRSb GSMc

3 14.1 15.9 15.9

a MPD (%) is the mean percentage deviation defined as
100

∑M
j=1

∑Nj
i=1|(xexp

i −xcalc
i )/x

exp
i |∑M

j=1Nj
where x

exp
i and xcalc

i are experimental

and calculated solubilities (mole fractions),Nj is the number of
experimental points in the data setj (Table 1), M is the number
of experimental data sets (here 32).

b MRS is the mixture response surface method (Ochsner et al.,
1985). The value of MPD was taken fromTable 2of the Jouyban-
Gharamaleki et al. (Jouyban-Gharamaleki et al., 1999)paper.

c GSM is the general single model (Barzegar-Jalali and
Jouyban-Gharamaleki, 1996). The value of MPD was taken from
Table 2of the Jouyban-Gharamaleki et al. (Jouyban-Gharamaleki
et al., 1999)paper.

Jouyban-Gharamaleki et al. (Jouyban-Gharamaleki
et al., 1999), but some additional data were also
included. All selected mixtures and the results of
calculations are listed inTables 1 and 2.

There is only one adjustable parameter (e) in our
equation. However, the solubilities of the solute in the
individual constituents of the mixed solvent are also
needed. Therefore, one can consider our equation as
a three-parameter one. For this reason, our results in
Table 2are compared to the best three-parameter equa-
tions. One can see fromTable 2thatEq. (23)with the
molar volume given byEq. (25)provides slightly bet-
ter results than the three-parameter equations available
in literature.

Generally speaking, the correlating equations
should meet the following criteria:

(a) provide an accurate enough representation of the
experimental data,

(b) use a minimum number of adjustable constants,
(c) have some theoretical justification, and
(d) have predictable power.

Regarding criterion (a), 30% for the mean percent-
age deviation is considered an acceptable error range
(Reillo et al., 1995b). Therefore, all equations listed
in Table 2 satisfy criterion (a). Of course, one can
achieve a much better mathematical representation of
the data by using a larger number of adjustable pa-

rameters. In the paper by Jouyban-Gharamaleki et al.
(Jouyban-Gharamaleki et al., 1999), equations with 4,
5, and 6 adjustable parameters were listed. However,
they are devoid of any physical meaning and require
numerous experimental points for the parameter esti-
mation. The adjustable parameter (e) in our equation
can be found from a single solubility measurement.
Furthermore, ourEq. (23)was derived using the fluc-
tuation theory for ternary mixtures and is rigorously
valid. It is clear that the idealized model employed can-
not predict some peculiar features of real systems, such
as the maximum in the curve of solubility versus mixed
solvent composition. However, a simple modification
(Eq. (25)) enabledEq. (23)to represent this maximum.

An inspection of the values of the parameter (e)
(Table 1) shows that this parameter has always posi-
tive values for the systems investigated and depends
on the natures of both the drug and cosolvent. For
the solubilities of structurally related caffeine and
theophyllene in aqueousN,N-dimethylformamide, the
values of (e) are close to each other (45.2 and 42.8).
However, the values of (e) for the structurally more
different sulfonamides (sulfadiazine, sulfadimidine,
sulfamethizole, sulfamethoxazole, sulfapyridine, sul-
famethoxypyridazine, sulfanilamide, and sulfisomi-
dine) in water/dioxane mixtures differ by a factor of
two and even three for sulfamethizole.

The limitations of the proposed method are directly
related to the simplifications made. The two most im-
portant ones are: (1) the ideality of the mixed solvents
and (2) the infinite dilution approximation. Our next
papers will be focused on nonideal mixed solvents and
on the effect of the finite concentration of a solute.

4. Conclusion

In this paper, the fluctuation theory of solutions was
applied to the solubility of drugs in aqueous mixed
solvents. A rigorous expression for the composition
derivative of the activity coefficient of a solute in a
ternary solution (Ruckenstein and Shulgin, 2001) was
used to derive an equation for the activity coefficient
of a solute at infinite dilution in an ideal mixed solvent
and an expression for the solubility of a poorly soluble
solid in an ideal mixed solvent (Eq. (23)). This simple
equation can predict the solubility in terms of those in
the individual constituents of the mixed solvent and
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their molar volumes. However, this simple equation
cannot explain the maximum observed experimentally
in the curve of solubility versus mixed solvent com-
position. By considering that the molar volume of the
mixed solvent is nonideal and that the excess volume
depends on its composition, the above equation was
modified by including one adjustable parameter. This
modified equation can be considered a three param-
eter equation (parameter (e) in Eq. (25)and the two
solubilities of the solid in the individual constituents).
The semiempirical equation proposed was compared
with other three parameter equations for the solubility
of drugs in an aqueous mixed solvent.
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